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ABSTRACT

Widespread alternative polyadenylation (APA) oc-
curs during enhanced cellular proliferation and
transformation. Recently, we demonstrated that
CFIm25-mediated 3′ UTR shortening through APA
promotes glioblastoma tumor growth in vitro and
in vivo, further underscoring its significance to tu-
morigenesis. Here, we report The Cancer 3′ UTR At-
las (TC3A), a comprehensive resource of APA us-
age for 10,537 tumors across 32 cancer types. These
APA events represent potentially novel prognostic
biomarkers and may uncover novel mechanisms for
the regulation of cancer driver genes. TC3A is built
on top of the now de facto standard cBioPortal.
Therefore, the large community of existing cBioPor-
tal users and clinical researchers will find TC3A fa-
miliar and immediately usable. TC3A is currently fully
functional and freely available at http://tc3a.org.

INTRODUCTION

Alternative polyadenylation (APA) is emerging as a new
paradigm of post-transcriptional regulation (1) for >70% of
human genes. By changing the position of polyadenylation,
APA can generate transcripts with diverse 3′ UTRs that
contain distinct cis-regulatory elements, such as miRNA
binding sites, leading to altered function, stability, localiza-
tion and translation efficiency of target RNAs. The role of
APA in human cancers is only beginning to be appreciated.
Both proliferating and transformed cells have been shown
to favor shortened 3′ UTRs, potentially leading to the ac-
tivation of proto-oncogenes through evasion of miRNA-
mediated repression. In addition, our recent study identi-
fied CFIm25 (2), a master APA regulator, as a glioblastoma
(GBM) tumor suppressor gene, further underscoring the
importance of APA in cancer development.

Several APA databases exist with varying scopes. The
first-generation APA databases, i.e. PolyA DB2 (3) and
PACdb (4), provide a limited amount of APA sites mainly
based on the small expressed sequence tag (EST) database.

With the rapid progress of next-generation sequencing
(NGS), the second-generation APA databases were recently
developed leveraging the various partitioned NGS data. For
example, APADB (5) and APASdb (6) use specialized NGS
protocols for APA detection, e.g. PolyA-seq, while effec-
tive are still currently limited to only a few tissue types
and diseases. Furthermore, what was not clearly established
from these databases is how pervasive and recurrent APA
is in large clinical cohorts across distinct cancer types. The
largest source of data that could mitigate this limitation,
The Cancer Genome Atlas (TCGA), has devoted significant
efforts to characterize numerous genomic, epigenomic, and
transcriptomic features in thousands of tumors; however,
they lack a PolyA-seq platform for APA analysis.

To at least partially fill this knowledge gap, we recently
developed a powerful bioinformatics algorithm DaPars (7),
one of the first of its kind, for the de novo identification of
APA events based on localized changes in 3′ UTR RNA-
seq read density between tumors and matched normal tis-
sue (normals). DaPars has been shown to accurately detect
the majority of APA events in our computational and ex-
perimental validations (7). We have applied DaPars to 358
TCGA tumor/normal pairs and revealed 1,346 recurrent
APA target genes. Strikingly, the majority of APA events
have shorter 3′ UTRs in cancers and tend to be more up-
regulated in tumors, supporting the previous cell line model
(1) that genes are up-regulated by shortening 3′ UTRs
to escape miRNA-mediated repression. However, in other
TCGA tumors beyond those 358 we previously reported,
the critical target genes subject to APA, remain poorly un-
derstood.

Here we present The Cancer 3′ UTR Atlas (TC3A) as a
new web resource of APA usage in human cancers. TC3A
distinguishes itself in several ways: (i) TC3A, to the best of
our knowledge, is the first repository to host a comprehen-
sive compilation of APA events for more than ∼10,537 tu-
mors across 32 cancer types (Supplementary Table S1). (ii)
TC3A builds upon a proven user-friendly interface cBio-
Portal and provides visualizations and analytic functions in
addition to data querying and download. TC3A users can
easily explore the effects of APA usage using survival analy-
sis and correlation analysis. (iii) TC3A uses standard RNA-
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Figure 1. Summary of TC3A. (A) TC3A main query interface. An auxiliary table provides all reported APA genes. (B) TC3A provides download links to all
PDUI values indexed by genes or cancer types. (C) TC3A Correlation analysis: the gene EP300’s PDUI value negatively correlates with its gene expression
value. To reproduce: Choose cancer type Bladder Urothelial Carcinoma (BLCA) and gene EP300. Select the ‘Plots’ tab. In the ‘Horizontal Axis’ panel,
select ‘mRNA’ as ‘Profile Type’ and ‘PDUI’ as ‘Profile Name’. (D) Clinical data analysis: plot EIF2AK2’s PDUI values against the disease stages. To
reproduce: Choose cancer type Kidney Renal Clear Cell Carcinoma (KIRC) and gene EIF2AK2. Select the ‘Plots’ tab. In the ‘Horizontal Axis’ panel,
select ‘Clinical Attribute’, then pick ‘Neoplasm Disease Stage American Joint Committee on Cancer Code’. In the ‘Vertical Axis’ panel, select ‘mRNA’ as
‘Profile Type’ and ‘PDUI’ as ‘Profile Name’. (E) Survival analysis using PDUI values. To reproduce, Choose cancer type Bladder Urothelial Carcinoma
(BLCA) and gene EP300. Then select the ‘Survival’ tab and scroll down to look for the figure titled as ‘APA Overall Survival Kaplan-Meier Estimate’. (F)
The cross-cancer PDUI value distribution plot shows the overview of APA events cross multiple cancers.
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Seq data to infer APA de novo events, which is a critical com-
ponent because PolyA sequencing methods (8,9) have not
been widely adopted by the cancer community. In contrast,
RNA-seq has been extensively used in almost every cancer
genomics project including TCGA.

DATA COLLECTION AND DATABASE CONTENT

We downloaded RNA-seq BAM files of 10,537 tumor sam-
ples across 32 TCGA cancer types from the UCSC Can-
cer Genomics Hub (CGHub). The original BAM files were
then sorted and converted into bedgraph files using bed-
tools (10). Multiple bedgraph files within each cancer type
were then jointly analyzed together to identify de novo APA
sites with an updated version of DaPars that can handle
multiple tumors samples without relying on normal tissues
(https://github.com/3UTR/DaPars2).

For each transcript in tumors, we used a linear regres-
sion model to infer the exact location of APA site within 3′
UTR region from multiple tumor RNA-seq data by mini-
mizing the deviation between the observed and the expected
read density based on the two-polyA-site model, the most
common model of APA regulation:

(W1,2...m∗
L , W1,2,...m∗

S , P∗)

= arg min
W1,2...m

L , W1,2...m
S ≥0, 1<P<L

m∑

i=1

||Ci − (Wi
LIL + Wi

SIp)||22

where WL and WS are the average abundances of transcripts
with distal and proximal polyA sites for sample i , respec-
tively. Ci is the normalized read coverage of sample i . L is
the length of the annotated 3′ UTR region. m is the num-
ber of jointed samples. P is the estimated length of alterna-
tive proximal 3′ UTR. IL and IP are indicator. The optimal
proximal site P* is the one with the minimal objective func-
tion value.

The degree of difference in APA usage in each tumor can
be quantified as a change in Percentage of Distal polyA site
Usage Index (�PDUI), which is capable of identifying 3′
UTR lengthening (positive index) or shortening (negative
index).

DATABASE ORGANIZATION AND WEB INTERFACE

We organized APA usage data generated by DaPars into a
series of MySQL tables. We adapted the original cBioPor-
tal (11) web interface to our data and developed several an-
alytical functions. cBioPortal is now the de facto standard
among cancer biologists and clinical researchers who rely
on TCGA datasets and has received nearly 2000 citations
since 2013. With cBioPortal, researchers can easily access
various molecular and clinical profiles from large-scale ge-
nomics datasets. These characteristics make cBioPortal a
preferred foundation for TC3A.

Integrating APA data with cBioPortal

APA data is mathematically modelled as a two-dimensional
matrix, or profile, where each cell represents a gene’s PDUI
value. The columns represent patient IDs and genes are in-
dexed by rows. For each of the 32 cancer types, one such

profile exists in the database. cBioPortal already provides all
32 cancer’s genomic datasets. By aligning the patient ID and
cancer type with existing cBioPortal datasets, APA data can
be queried through various existing cBioPortal interfaces.
To import the APA data, we used the dedicated importer
module of cBioPortal. These APA data are then retrieved
by Javascripts Ajax calls via Java Servlets end points. While
doing on-demand analysis and plotting, Javascripts analyze
data and call various plotting libraries to present the results.

The query interface

We adopted the original cBioPortal’s main query interface
(Figure 1A). Users can begin with typing the names of the
genes in the box and the system will automatically detect
any typos or alias and suggest corrections if necessary. An
auxiliary table is provided to include all APA genes reported
in the original DaPars paper (7). Genes can be searched and
selected from this table. Cancer types are also specified in
this interface and the available analysis functions will show
up depending on the number of cancer types selected. When
users choose multiple cancer types, the cross-cancer distri-
bution analysis is available. If only one cancer type is se-
lected, users can perform survival analysis and correlation
analysis.

Data download

Users can freely download PDUI values for genes of interest
in the ‘Download Data’ panel. The full dataset can also be
downloaded individually for each cancer type, as shown in
Figure 1B.

Correlation analysis

TC3A provides the function to examine the correlation of
3′ UTR usage with other molecular features. In Figure 1C,
gene EP300’s PDUI is reversely correlated with its mRNA
gene expression. It is consistent with recent reports that
binding by miR-132 to a site located after the annotated
proximal polyA site can significantly reduce EP300’s expres-
sion levels (12).

For any single gene, the portal also allows users to ex-
amine the association of a gene’s PDUI values with its
clinical data. In Figure 1D, we provide such an example
where in kidney renal clear cell carcinoma (KIRC), the gene
EIF2AK2’s PDUI value is plotted against the neoplasm dis-
ease stage. The median PDUI values gradually reduced in
later clinical stages.

Survival analysis

TC3A enables researchers to analyze which APA event
impacts patient overall survival. Users can generate pub-
lication quality Kaplan-Meier plot with log-rank test P-
value. In Figure 1E, we demonstrate an example using gene
EP300, a known APA gene from PolyA DB2 (3). Using only
its PDUI values to separate patient groups, we observed a
significant longer survival in bladder cancer patients with 3′
UTR shortening. In comparison, when using only its ge-
nomic data, the patients cannot be effectively separated.
This is in accordance with our previous report that APA
data may better predict patient survival (7).
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Cross-cancer distribution analysis

When multiple cancer types are selected, in the ‘Expression’
tab, a box plot shows the overview of PDUI distribution in
each cancer type for the gene of interest. Users can easily
discover the cancer types that have dramatic APA changes.
In Figure 1F, the cross-cancer distribution plot shows the
PDUI values of gene EP300 across different cancer types.

DISCUSSION

We present TC3A as a resource of APA usage for 10,537
tumors across 32 cancer types. This unique resource fo-
cuses on human cancers and utilizes routinely available
large-scale RNA-Seq datasets from TCGA. Recent reports
suggest that APA events are likely to be novel prognostic
biomarkers for survival (7,13). It is therefore urgent to add
APA usage as an additional dimension to existing cancer
genomic analysis. In TC3A, we compiled APA events de-
tected by our updated method DaPars (7). We then sys-
tematically integrated APA with existing cancer data from
TCGA within the framework of cBioPortal, a preferred
database interface by cancer researchers. In this version of
TC3A data release, we provide APA data for 10,537 tumors
across 32 cancer types. Due to the limitations of DaPars,
we used the annotated 3′UTR region as distal polyA site
without including the lengthening events, and other APA
events occurred outside of 3′UTR regions were not con-
sidered such as coding region APA (14). The 3′UTR usage
calculated for each transcript was based on two-polyA site
model, thus a few genes containing more than two polyA
sites may be under-represented. It is expected with the in-
creasing number of RNA-Seq datasets from Genomic Data
Common (GDC, https://portal.gdc.cancer.gov/) and other
similar consortium projects such as International Cancer
Genome Consortium Data (ICGC) (15), TC3A will grow
by incorporating newly generated RNA-seq data in the fu-
ture. In summary, TC3A will enable biologists to explore
functional consequences of APA events in human cancers,
together with other genomics profiles in cBioPortal.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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